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S.A. MIRER, S.A. ODINTSOVA and V.A. SARYCHEV 

The nature ofthestationary rotations of an axisymmetric rigid body on 
a string suspension at high angular velocities is studied. The domain in 
the space of dimensionless parameters of the system is found where, given 
the same angular velocity, the maximum number (sixteen) of different 
permanent rotations is possible. 

It was shown earlier,see/l/ **(**andalsoISHLINSKII A.YU.,et al., 
On a method of balancing a rapidly rotating body, Preprint No.146, Inst. 
Problem Mekhaniki Akad. Nauk SSSR, Moscow, 19801, that as the angular 
velocity increases without limit I the system tends to a position in which 
some principal central axis of inertia of the body coincides with the 
fixed vertical. It was shown in /2/ that there are stationary motions 
in which an axis of symmetry of the body is horizontal. The different 
types of permanent rotations have been studiede.g.,i.n/2, 3/***(***seealso 
SARYCHEV V.A., et al., The positions of relative equilibrium of an axisym- 
metric rigid body suspended on a string, Preprint No.140, Inst. Prikl, 
Matem. Akad. Nauk SSSR, Moscow, 1987). 

We consider an axisymmetric rigid body with centre of mass G , suspended on a weightless 
absolutely rigid rod at an arbitrary point 0, (Fig.1). The other end of the rod (point 0,) 
is coupled to a device that rotates the system with angular velocity w about a vextical axis. 
The equations describing the permanent rotations of the system are /2/ 

o*(l sin a + a sin9)cos.a - gsin a = 0 

mwaa~~sin~+asin8)cosB+‘!,fr9-C)~*sin2~6~ 
f3) = mgca sin 3 ff) 

where m is the mass ofthebody, A, C are the central equatorial and axial moments of inertia 
of the body, a is the distance O&Z, and 1 is the length of the rod O,O,. Let &,0 be 
respectively the angles between the downwards vertical andthevectors O,O, and 0,G. The 
angle d between 0,G and the axis of symmetry is best regarded as always positive and 
varying in the interval IO, x121, regardless of whether the point 0, is above or below the 
axis of symmetry. In order to distinguish between these cases, we make the following stipu- 
lation. We measure 6 counter-clockwise fxom the line 0,G. If 8 is then greater than x,'2, 
we consider the position of the system after a half-period. Then, 8 will lie in the required 
range, and cc and 6 will be replaced by ..-a, -6. This means that both uand 0 must be 
regarded as varying in the interval (-s,n]. 

We introduce the pasameters 

Fig.1 

and we write system (1) in the form 

Us, - 2,) sin@ +x, sin a] cosa = sin 05 
2% sin ft cos t? f s, sin a co9 8 + 2, co9 26 = sin 8 

On eliminating the angle a from (2) and introducing the 
variable u = tg l/,9, we obtain the equation 

(2) 
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f2 (u; zl, ZJ [f" (u; 23, ZJ + (1 - u")21 - 242 (1 - u4j2 :t 
fa (u; 22, 4 = 0 

f (u; x, y) = 2xu (I - 29) + y (u” - fsu* -t 1) - 2u (1 -t u2) 

(3) 

the left-hand side of which is a polynomial of degree sixteen in u. This means that Eq.(3) 
can have at most 16 solutions, andthe mechanical system can have at most 16 stationary motions. 

It is not yet clear whether a system exists for which all 16 soltuions can be realized. Further 

analysis not only answers this question in the affirmative, but also indicates the domain of 
parameter space in which this is possible. 

we consider Eq.(3) for large w. For this, we introduce the small parameter & = l/02, 

Put ziO =: EZi (i = 1, 2, 3, 4), and seek the solution as the series 

u = ug + "?A1 -t- . . . (4) 
TO find uO we substitute series (4) into Eq.(3) and retain only the terms which are 

independent of F. The resulting equation will hold when ug is a solution of any of the three 
equations 

2z,“u, (I- u,2) + zz”(tio’- Gu,2 +I) + at,“(l- ua’) = 0, G = Cl (5) 

2z,“u, (1 - /L”Z) + i2” (ug4 - GIL”z -t 1) = 0 (6) 

We find from system (2) that, as o+ m, we have a, = a~12 for motions given by Eq.(5) 

with (r == 1, while a, = -nli w‘hen 0=-l, and 

when uO satisfies Eq.(6). 

We start by considering Eq.(6). We write it in terms of the physical parameters, sub- 

stituting z20iZ30 = V&g 28, U@ = tg 'izOo. It can be shown that the result is equivalent to 

the equation 

tg20, + tg 26 = 0 
the four roots of which satisfy the equations 

1) e. + 6 = n, 2) B. + 6 = n/z, 3) 8, + 6 = 0, 

4) 00 + 6 = --n/2 (8) 

By (7), we have here for the angle a, the equation 

sin a, = --al-'sin 0 I) (9) 

i.e., in the zeroth approximation the centre of mass of the body lies on the axisofrotation 

of the system. 
Expressions (8) and (9) imply that there are types of stationary motions for which, as 

o increases without limit, a principal central axis of inertia of the body tends to coincidence 

with the fixed vertical. This property, which was studied theoretically in /l/, is the basis 
of the method of dynamic balancing, the aim of which is to find the principal central axis of 

inertia, and possibly to check that it coincides with the axis of geometrical symmetry. 

Returning to Eq.(6), we write its four solutions as 

(Here and throughout, we omit the subscript O in the parameters 21, , . ., 2,) * Note that, 

corresponding to Eqs.l)-4) of (8) we have the relations 

1) u_ (4) > 1, a) 0 < u+ (u_) < 1 (11) 

3) IL_ (VJ = -i/u+ (VA), 4) u_ (v._) = -l/u+ (u_) 

Substituting series (4) into Eq.(3) and retaining terms with E, we get 

where c and b are expressions which depend on uctl zi. In the case when 

(1 -i- uo")2 - (2p,ud2 > 0 (13) 
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when Eq.(12) has real solutions or, there are eight types of permanent rotations defined in 
the zeroth approximation by Eqs.(8) or their equivalents (10). The solutions in each pair 
that corresponds to the same uO, differ by the value of u1 and the sign of cos att (Fig.2). 

We study (13) by factorizing its left-hand side. Since pz = all>O, (13) is equivalent 
t0 

(1 + U02) - a*zp,u,> 0 (14) 
where (T=I if +,>O, and o = --1 if U,<O. 

Assume that, for %I> 8 we have (14) with CT = 1; then obviously, for -1iu~ we have 
(14) with e =-I. Recalling that (11) hold for the values (lo), it suffices to require 
simply that (14) holds for 0=l with positive u,,: LL.+ (u,) and U, (u_). By solving (14) for 
o = 1 and using (10) for each root, we obtain the domains in the space of parameters PIa P21 
in which (14) holds. These domains are given by the sets of inequalities 

when G = 1 for the root u+(v+) and a= -1 for u+ (u_). 

Fig.2 Fig.3 

The domain of the parameter space in which the two sets of inequalities are simultaneously 
satisfied is given by the first system (15) and is shown in Fig.3,a. In a mechanical system 
whose parameters belong to this domain, all. eight types of permanent rotations shown in Fig. 
2 will exist. 

Let us turn to Eqs.(S). Note that, if u0 is the root of (5) with rs = 1, then --2/U, 
is the root when o =--1, so that we can confine ourselves to the case 0 = 1. Byanalysing 
the signs of the function 

F (G) = (2% - 24) u? - 22,US - 6z,uZ -t- 2zp + (z* -I- 24) (16) 

at the points u= *tl,o, and as u tends to f m, we can show that Eq. (5) with 0=l 
always has at least two real roots. For a second pair of real roots to exist, the instant of 
degeneration to a single double root is critical. This instant is given, apart.from the 
equation F = 0, by the condition F,' = 0, i.e., by a system of equations from which u 
can be eliminated, so that we obtainthe dependence 

(17) 
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connecting the parameters ps and p4_ The curve given by (17) (Fig.3,b) bounds the domain of 
existence of four roots (in the hatched part) and of two roots of Eq.(S) with o = 1 and, 
together with the lines Pa = *I, forms the domains 1 - 8, in whichthe function (16) differs 
in the number of zeros in at least one of the following intervals: 

rt<---1, --I<u<o, o<rz<1, i<u (Q3) 

The intervals (18) of u corresponds to the intervals of 0: 

-n<B<-+. -+<e<o, o<e<+, +<ecn 0% 

The zeros u,, of the function F in the different intervals (181, along with TV,,, define 
the different types of motion. Thus, by analysing the qualitative shape of the graphs of (16) 
in the domains 1 - 8, we can at once determine the types of stationary motions that can exist 
in a mechanical system with the relevant parameters. 

Fig.4 

All possible types of permanent rotations with a, = n/2 (a0 - --X/2) are shown on the 
left (right) of Fig.4. The types of motion on the same horizontal level in Fig.4 correspond 
to the solutions u,, and -l/u, (1 B. (a,, = n/2) - B. (a0 = ---x/2) [ = n) of Eqs.(S) with u = 1 and 
o= --1. Analysis of the graphs shows that, for a mechanical system with the parameter 
values of domains 1 and 8, there is one root in each of intervals (19), and the limiting modes 
will belong to different types shown in Fi.g.4. In domains 2, 4, 5, 7, the total number of 
limiting modes given by Eqs.(5) will again be eight, though two pairs of them will be of the 
same type. 

To sum up, we have shown that, if the physical parameters of the system are such that the 

point (pl. . . VT PJ lies in the domain of four-dimensional space which is the Cartesian product 
of the hatched domains of Fig.T(,a, b, we can guarantee the existence of sixteen stationary 
motions with large W. If the parameters are such that IPP I> 1, and the point (PI7 PJ 
belongs to the hatched domain of Fig.3,a, then the 16 limiting stationary modes will be of 
different types. 

We can use these results to find the number and types of stationary motions at large o 
for any mechanical system. But the fact that the parameters are related by 

PIP4 = Ps - Pa (20) 

means that therefs not aset of parameters that defines an actual system corresponding to any 

point bl, . . ., PA of the four-dimensional domain; the set must belong to the hypersurface 

(20). This means that we cannot easily solve the converse problem, i.e., find the parameters 
of the system having desired limiting types of terminal modes. An attempt to transform from 
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four- to three-dimensional domains so that a system of three (difficult) inequalities can be 
solved leads to failure. 

Fig.5 

It is probably the case that we can often work with subsets of the 
in which some parts can be discarded so as to obtain simple expressions 
If we can transform to a subset of at any rate one of the two planes of 
replace the domain of Fig.3,a by a strip, orthedomain of Fig.3, b by a 

_. 

domains of Fig.3,a, b, 
for the boundaries. 
parameters, i.e., 
rectangle (or augment 

it up to a rectangle), then the transition from four to three independent parameters takes 
place automatically. 

Let us quote an example of an actual system which, for large o can correspond to 16 
different stationary modes of the permanent rotation type. We suspend on a rod of length 
1= 1 m a uniform disc of radius 45 cm. Let 6 = 0.75 rad and 0 = 2 cm; then the disc 
thickness must be 2acos6 = 2.9 cm (the rod is clamped to the disc on its front surface). For 
this system, the dimensionless parameters have the values 

pi = 0.06, p* = 0.02, p3 = -0.06, I'* = -1.26 

and thus belong to the hatched domain of Fig.3.a and domain 8 of Fig.3,b. The system must 
therefore in fact have 16 stationary modes; it can be seen from Fig.5, where we show the 
curves of a (the continuous curves) and curves of 0 (the broken curves) against the angular 
velocity o that these modes exist, starting from o ~3.4 see-1 (the numbering of the O(e) 
curves corresponds to the numbering of the a(o) curves; thenumbering is made along the right- 
hand edge of Fig.5, from top to bottom). 
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